Legged Robot 16 . Legged Robots
نویسندگان
چکیده
In this chapter, we introduce legged robots. After introducing the history of legged robot research in Sect. 16.1, we start to discuss hopping robots and analyze a simple passive walker as a typical cycling walking robot in Sect. 16.2; the Poincaré map is one of the most important tools to analyze its dynamics and stability. In Sect. 16.3, the dynamics and control of general biped robots are discussed. The key is the forward dynamics subject to the unilateral constraint between the feet and the ground. Its formal treatment leads to walking trajectory generation and various control methods. As a practical scheme to control biped robots, we discuss the zero-moment point (ZMP) in Sect. 16.4, including its definition, physical meaning, measurement, calculation, and usage. In Sect. 16.5, we move to multilegged robots. In this field, the most important subject is the relationship between gaits and stability. We also introduce the landmark robots in this field. In Sect. 16.6, we overview the divergence of the legged robots. We see leg–wheel hybrid robots, leg–arm hybrid robots, tethered walking robots, and wall-climbing robots. To compare these legged robots with different configurations, we use some useful performance indices such as the Froude number and the specific resistance, which are introduced in Sect. 16.7. We conclude the chapter and address future trends in Sect. 16.8.
منابع مشابه
Stiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملKinematic and Gait Analysis Implementation of an Experimental Radially Symmetric Six-Legged Walking Robot
As a robot could be stable statically standing on three or more legs, a six legged walking robot can be highly flexible in movements and perform different missions without dealing with serious kinematic and dynamic problems. An experimental six legged walking robot with 18 degrees of freedom is studied and built in this paper. The kinematic and gait analysis formulations are demonstrated by an e...
متن کاملPlaying soccer with legged robots
Sony has provided a remarkable platform for re search and development in robotic agents namely fully autonomous legged robots In this paper we describe our work using Sony s legged robots to participate at the RoboCup legged robot demonstration and com petition Robotic soccer represents a very challenging environment for research into systems with multiple robots that need to achieve concrete o...
متن کاملMotion Planning for Legged Robots
Slide 0 In this talk, we present a general trajectory generation scheme for a class of " kinematic " legged robots. The method does not depend upon the number of legs, nor is it based on foot placement concepts. Instead, our method is based on an extension of a nonlinear trajectory generation algorithm for smooth systems to the legged case, where the relevant mechanics are not smooth. Our exten...
متن کامل